Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser
Stefanie Bensmann, Fabian Gaußmann, Martin Lewin, Jochen Wüppen, Sebastian Nyga, Christoph Janzen, Bernd Jungbluth, and Thomas Taubner
Optics Express 22, p. 22369-22381 (2014)
Scattering-type scanning near-field optical microscopy (SNOM) offers the possibility to analyze material properties like strain in crystals at the nanoscale. In this paper we introduce a SNOM setup employing a newly developed tunable broadband laser source with a covered spectral range from 9 µm to 16 µm. This setup allows for the first time optical analyses of the crystal structure of gallium nitride (GaN) at the nanometer scale by excitation of a near-field phonon resonance around 14.5 µm. On the example of an artificially induced stress field within a GaN wafer, we present a method for a 2D visualization of small deviations in the crystal structure, which allows for fast qualitative characterizations. Subsequently, the stress levels at chosen points were quantified by recording complex near-field spectra and correlating them with theoretical model calculations. Applied to the cross-section of a heteroepitaxially grown GaN wafer, we finally demonstrate the capability of our setup to analyze the relaxation of the crystal structure along the growth axis with a nanometer spatial resolution.