Enabling Waveguide Optics in Rhombohedral-Stacked Transition Metal Dichalcogenides with Laser-Patterned Grating Couplers

Fabian Mooshammer, Xinyi Xu, Chiara Trovatello, Zhi Hao Peng, Birui Yang, Jacob Amontree, Shuai Zhang, James Hone, Cory R. Dean, P. James Schuck and D. N. Basov

ACS Nano 18, 4118 (2024)

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.