Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith and H.-T. Chen

Light: Science & Applications 7, 51 (2018)
During the past decades, major advances have been made in both the generation and detection of infrared light; however, its efficient wavefront manipulation and information processing still encounter great challenges. Efficient and fast optoelectronic modulators and spatial light modulators are required for mid-infrared imaging, sensing, security screening, communication and navigation, to name a few. However, their development remains elusive, and prevailing methods reported so far have suffered from drawbacks that significantly limit their practical applications. In this study, by leveraging graphene and metasurfaces, we demonstrate a high-performance free-space mid-infrared modulator operating at gigahertz speeds, low gate voltage and room temperature. We further pixelate the hybrid graphene metasurface to form a prototype spatial light modulator for high frame rate single-pixel imaging, suggesting orders of magnitude improvement over conventional liquid crystal or micromirror-based spatial light modulators. This work opens up the possibility of exploring wavefront engineering for infrared technologies for which fast temporal and spatial modulations are indispensable.