High performance crystalline nanocellulose using an ancestral endoglucanase

B. Alonso-Lerma, L. Barandiaran, L. Ugarte, I. Larraza, A. Reifs, R. Olmos-Juste, N. Barruetabe├▒a, I. Amenabar, R. Hillenbrand, A. Eceiza and R. Perez-Jimenez

Commun Mater 1, 57 (2020)
Improving the efficiency of enzymes towards decomposing substrates has been one of the central goals in the biotechnology industry. However, the modification of enzymes for upgrading natural materials to high-value performant materials is largely unexplored. Here, we demonstrate that the ancestral form of a Cel5A bacterial endoglucanase, unlike its modern descendant from Bacillus subtilis, was able to generate cellulose nanocrystals (EnCNC) chemically pure, maintaining native cellulose structure and displaying higher thermal stability and crystallinity than standard CNC obtained by acidic treatment. We demonstrate that EnCNC alone is a suitable matrix to grow cells in 2D and 3D cultures. Importantly, EnCNC accepts well graphene derivatives to fabricate conductive hybrids inks forming a stable flat surface where cells also attach and proliferate. Our results demonstrate that EnCNC has physicochemical properties unattainable with standard CNC, making it a unique material ideal as a matrix for the design of biocompatible advanced materials for tissue engineering and other applications.