Tracking slow nanolight in natural hyperbolic metamaterial slabs

neaspec’s neaSNOM was used by researchers at the CIC nanoGUNE to visualize how light moves in time and space inside an exotic class of matter known as hyperbolic materials. For the first time, ultraslow pulse propagation and backward propagating waves in deep subwavelength-scale thick slabs of boron nitride – a natural hyperbolic material for infrared light – could be observed.

Read More
Terahertz near-field microscopy below 30nm spatial resolution

neaspec GmbH and Fraunhofer IPM have developed a ready-to-use terahertz system that is capable of achieving a spatial resolution of 30 nanometers in combination with neaspec’s near-field microscope – neaSNOM

Read More
Nano-imaging probes molecular disorder in organic semiconductors

Using nano-FTIR neaSNOM it could be shown that thin-film organic semiconductors contain regions of structural disorder. These could inhibit the transport of charge and limit the efficiency of organic electronic devices.

Read More
Controlling Graphene plasmons with resonant antennas & conductivity patterns

neaspec’s neaSNOM microscope allows for launching and controlling light propagating along graphene, opening new venues for extremely miniaturized photonic devices and circuits

Read More
Mapping local conductivity in semiconductor devices

Near-field microscopy at infared and terahertz frequencies allows to quantify free carrier properties at the nanoscale without the need of electrical contacts.

Read More
Nanoscale phase transitions

The high spatial resolution of infrared near-field microscopy allows for detailed studies of phase transitions in materials like the insulator-to-metal transition of vanadium dioxide (VO2) thin films.

Read More
Investigating local conductivity of semiconductor nanowires

The local conductivity of nanowires can be investigated by infrared near-field microscopy.

Read More