Tracking slow nanolight in natural hyperbolic metamaterial slabs

neaspec’s neaSNOM was used by researchers at the CIC nanoGUNE to visualize how light moves in time and space inside an exotic class of matter known as hyperbolic materials. For the first time, ultraslow pulse propagation and backward propagating waves in deep subwavelength-scale thick slabs of boron nitride – a natural hyperbolic material for infrared light – could be observed.

Read More
Ultrafast spectroscopy of electronic nano-motion in nanowires

The neaSNOM microscope equipped with a THz illumination unit were applied in ultrafast spectroscopy to take snapshots of super-fast electronic nano-motion. The scientists were able to record a 3D movie of electrons moving at the surface of a semiconductor nanowire.

Read More
Controlling Graphene plasmons with resonant antennas & conductivity patterns

neaspec’s neaSNOM microscope allows for launching and controlling light propagating along graphene, opening new venues for extremely miniaturized photonic devices and circuits

Read More
Plasmon Mapping on Graphene with neaSNOM

Two independent research teams have successfully used their neaSNOM infrared near-field microscopes for laying down a ghost: visualizing Dirac plasmons propagating along graphene, for the first time.

Read More
Characterization of optical surface waves

Infrared near-field microscopy allows to study the propagation of surface waves in the infrared spectral regime. Amplitude and phase resolved near-field images reveal local interference effects or enable the determination of the complex wave vector of surface waves. Surface waves can be excited in the mid-infrared spectral regime by e.g. metal structures on Silicon Carbide…

Read More
Studying superlensing and meta-materials

Direct verification of superlensing can be achieved by near-field microscopy as the local field transmitted by a superlens can be investigated in the near-field of the lens.

Read More
Infrared nanofocusing on transmission lines

Direct visualization of infrared light transportation and nanofocusing by miniature transmission lines is possible by amplitude- and phase-resolved near-field microscopy.

Read More
Analyzing optical nano-antennas

Amplitude and phase resolved near-field mapping of the local field distribution on resonant IR antennas can be used to analyze the antenna design and its functionality.

Read More